Cerebrospinal fluid physiology: visualization of cerebrospinal fluid dynamics using the magnetic resonance imaging Time-Spatial Inversion Pulse method
نویسنده
چکیده
Previously there have been no methods for directly tracing the flow of cerebrospinal fluid (CSF) under physiological conditions, and the circulation of CSF has therefore been studied and visualized by injecting a radioactively labeled tracer or contrast medium visible in x-ray images. The newly developed Time-Spatial Inversion Pulse (Time-SLIP) method makes it possible to directly visualize the flow of CSF using magnetic resonance imaging (MRI), permitting CSF dynamics to be depicted in a certain time frame. The CSF dynamics visualized using Time-SLIP has been found to differ markedly from the classical CSF circulation theory described in medical textbooks. It can be said that research on CSF dynamics has advanced to the next stage with the use of this innovative imaging method. Obtaining a more accurate understanding of normal CSF physiology and pathophysiology should lead to improved diagnostic accuracy, permit the identification of new etiological factors in a variety of diseases, and promote the development of new therapeutic approaches.
منابع مشابه
[Optimal imaging parameters and the advantage of cerebrospinal fluid flow image using time-spatial labeling inversion pulse at 3 tesla magnetic resonance imaging: comparison of image quality for 1.5 tesla magnetic resonance imaging].
Cerebrospinal fluid (CSF) imaging by time-spatial labeling inversion pulse (Time-SLIP) technique is labeled by CSF with a selective inversion recovery (IR) pulse as internal tracer, thus making it possible to visualize CSF dynamics non-invasively. The purpose of this study was to clarify labeled CSF signals during various black blood time to inversion (BBTI) values at 3 tesla (T) and 1.5 T magn...
متن کاملApplication of time-spatial labeling inversion pulse magnetic resonance imaging in the diagnosis of spontaneous intracranial hypotension due to high-flow cerebrospinal fluid leakage at C1-2
BACKGROUND Spontaneous intracranial hypotension (SIH) due to cerebrospinal fluid (CSF) leakage at C1-2 poses diagnostic and therapeutic challenges to spine surgeons. Although computed tomography (CT) myelography has been the diagnostic imaging modality of choice for identifying the CSF leakage point, extradural CSF collection at C1-2 on conventional CT myelography or magnetic resonance imaging ...
متن کاملDiagnosis of Meningitis Caused by Pathogenic Microorganisms Using Magnetic Resonance Imaging: A Systematic Review
Introduction: Bacterial meningitis is an acute infectious inflammation of the protective membranes covering the brain. Its early diagnosis is vital because of its high morbidity and mortality. It is mostly diagnosed by a gold standard diagnostic tool i.e. Cerebrospinal Fluid (CSF) analysis. However, it is sometimes difficult and or impossible to do this procedure and an alternative diagnostic t...
متن کاملAnalysis of Cerebrospinal Fluid in Diagnosis of Bacterial Meningitis; Using Nuclear Magnetic Resonance Spectroscopy: A Systematic Review
Background: Analysis of biofluids provides a unique window into the biochemical status of a living organism since the composition of a given biofluid will be modulated according to the level of function of the cells that are intimately concerned with its manufacture and secretion. One of the most successful approaches to biofluid analysis has been the application of NMR spectroscopy. Objective...
متن کاملMagnetic resonance imaging features of unusually dilated Virchow-Robin spaces--two case reports.
Two patients presented with unusually dilated Virchow-Robin spaces appearing as cystic lesions of varying size with signal intensity identical to the cerebrospinal fluid on all magnetic resonance pulse sequences. However, fluid-attenuated inversion-recovery (FLAIR) images disclosed small, high intensity foci adjacent to these cystic lesions in one patient. These high intensity foci on FLAIR ima...
متن کامل